Основная структура названий соединений в номенклатуре ИЮПАК
Номенклату́ра ИЮПА́К — система наименований химических соединений и описания науки химии в целом. Она развивается и поддерживается в актуальном состоянии Международным союзом теоретической и прикладной химии — ИЮПАК (IUPAC).
Правила номенклатуры органических и неорганических соединений содержатся в официальных изданиях ИЮПАК, среди которых основными сводами правил являются:
Изменения в этих документах публикуются в журнале «Pure and Applied Chemistry».
Использование номенклатуры ИЮПАК для органических соединений, содержащих функциональные группы, можно также рассмотреть на примере циклогексанола (cyclohexanol):
Примером номенклатуры неорганической химии ИЮПАК является хлорат калия (KClO3):
Структура молекулы метанола
Структура карбоната натрия в твёрдом состоянии
- Качественный и количественный состав
- Отличия соединений и смесей
- Классы химических соединений
- Описание основных групп органических соединений
- Регистрационный номер CAS
- Об этой статье
- Создание систематической номенклатуры
- Совершенствование номенклатуры неорганических и координационных соединений
- Тривиальные названия соединений
- Систематическая номенклатура ИЮПАК
- Правила составления названий алканов
- Номенклатура оснований и амфотерных гидроксидов
- Номенклатура кислот и солей
- Номенклатура комплексных солей*
Качественный и количественный состав
Состав химического соединения записывается в виде химических формул, а строение часто изображается структурными формулами. Систематическое название (номенклатура ИЮПАК) также указывает состав соединения.
В подавляющем большинстве случаев химические соединения подчиняются закону постоянства состава и закону кратных отношений. Однако известны довольно многочисленные соединения переменного состава (бертоллиды), например:
Для установления качественного и количественного состава химического соединения, используются различные методы химического анализа (например, колориметрия, хроматография). Эти методы являются предметом изучения аналитической химии.
Отличия соединений и смесей
Физические и химические свойства соединений отличаются от свойств смеси простых веществ — это один из главных критериев отличия соединения от смесей простых или сложных веществ, так как свойства смеси обычно тесным образом связаны со свойствами компонентов.
Другим критерием отличия является то, что смесь обычно может быть разделена на составляющие нехимическими процессами, такими, как просеивание, фильтрация, выпаривание, использование магнитов, тогда как компоненты химического соединения могут быть разделены только при помощи химической реакции. И наоборот, смеси могут быть созданы без использования химической реакции, а соединения — нет.
Некоторые смеси так тесно связаны, что некоторые их свойства сходны со свойствами химических соединений, и их легко спутать. Наиболее частым примером таких смесей являются сплавы. Сплавы изготавливаются при помощи физических процессов, обычно — путём расплавления и смешивания компонентов с последующим остыванием.
Примером химических соединений, похожих по свойствам, но не являющихся ни сплавами, ни смесями являются интерметаллиды.
Химические соединения получают в результате химических реакций. Сложные вещества могут разлагаться с образованием нескольких других веществ. Образование химических соединений сопровождается выделением (экзотермическая реакция) или поглощением (эндотермическая реакция) энергии. Физические и химические свойства химических соединений отличаются от свойств веществ, из которых они получены. Химические соединения разделяются на неорганические и органические. Известно более 100 тыс. неорганических и более 3 млн органических соединений. Каждое химическое соединение, которое описано в литературе, имеет уникальный идентификатор — CAS-номер.
Классы химических соединений
Химические соединения делят на классы: неорганические и органические. Последние в широком смысле включают в себя элементоорганические соединения: борорганические, кремнийорганические, фосфорорганические и др.
Некоторые виды сложных неорганических соединений:
Метан, органическое соединение
Структурная формула серной кислоты
Неорганическое вещество или неорганическое соединение — это химическое соединение, которое не является органическим, то есть оно не содержит углерода (кроме карбидов, цианидов, карбонатов, оксидов углерода и некоторых других соединений, которые традиционно относят к неорганическим). Неорганические соединения не имеют характерного для органических углеродного скелета.
Описание основных групп органических соединений
Органические соединения, состоящие исключительно из атомов углерода и водорода. Углеводороды считаются базовыми соединениями органической химии, все остальные органические соединения рассматривают как их производные. Поскольку углерод имеет четыре валентных электрона, а водород — один, простейший углеводород — метан (CH4). При систематизации углеводородов принимают во внимание строение углеродного скелета и тип связей, соединяющих атомы углерода. В зависимости от топологии строения углеродного скелета углеводороды подразделяют на ациклические и карбоциклические. В зависимости от кратности углерод-углеродных связей углеводороды подразделяют на предельные (алканы) и непредельные (алкены, алкины, диены). Циклические углеводороды разделяют на алициклические и ароматические.
Простые эфиры — органические вещества, имеющие формулу R-O-R1, где R и R1 — углеводородные радикалы. Следует однако учитывать, что такая группа может входить в состав других функциональных групп соединений, не являющихся простыми эфирами (см. Кислородсодержащие органические соединения).
Класс органических соединений, содержащих карбонильную группу (С=О) с одним алкильным или арильным заместителем. Альдегиды и кетоны весьма схожи, различие заключается в том, что последние имеют при карбонильной группе два заместителя. Поляризация двойной связи «углерод-кислород» по принципу мезомерного сопряжения позволяет записать следующие резонансные структуры:. Подобное разделение зарядов подтверждается физическими методами исследования и во многом определяет реакционную способность альдегидов, как выраженных электрофилов. В общем случае химические свойства альдегидов аналогичны кетонам, однако альдегиды проявляют бо́льшую активность, что связано с большей поляризацией связи. Кроме того, для альдегидов характерны реакции, не характерные для кетонов, например гидратация в водном растворе: у метаналя в связи с ещё большей поляризацией связи — полная, а у других альдегидов — частичная:. Простейшие альдегиды имеют резкий характерный запах (например, бензальдегид — запах миндаля). Под действием гидроксиламина превращаются в оксимы: .
Органические вещества, в молекулах которых карбонильная группа связана с двумя углеводородными радикалами. Общая формула кетонов: R1-CO-R2. Среди других карбонильных соединений наличие в кетонах именно двух атомов углерода, непосредственно связанных с карбонильной группой, отличает их от карбоновых кислот и их производных, а также альдегидов.
Класс органических соединений, молекулы которых содержат одну или несколько функциональных карбоксильных групп -COOH. Кислые свойства объясняются тем, что данная группа может сравнительно легко отщеплять протон. За редкими исключениями карбоновые кислоты являются слабыми. Например, у уксусной кислоты CH3COOH константа кислотности равна 1,75⋅10−5. Ди- и трикарбоновые кислоты более сильные, чем монокарбоновые.
Основная статья: Амиды
Основная статья: Амины
Регистрационный номер CAS
Всем химическим веществам, а также всем химическим соединениям, описанным в научной литературе, присваивается номер CAS, химической реферативной службы, по которому вещество можно идентифицировать в базах данных, например в PubChem.
Углеводороды, или соединения на основе цепочки из водорода и углерода, являются основой органической химии. Вам нужно научится наименовывать их согласно ИЮПАК, или Международному союзу теоритической и прикладной химии, который в настоящее время является признанным методом наименования углеводородных цепей.
Об этой статье
Система наименований химических соединений длительное время развивалась хаотично, наименования давались в основном первооткрывателями каких-либо соединений. Многие вещества известны настолько давно, что происхождение их наименований носит легендарный характер. Исторически сложившиеся «собственные имена» выделяют как тривиальные названия. Они не вытекают из каких-либо единых систематических принципов, не выражают строения соединения и чрезвычайно разнообразны. Например: рудничный газ, винный спирт, ванилин, сода.
Создание систематической номенклатуры
В конце XVII-начале XIX века химикам удалось выделить из растений и животных большую группу соединений, названных органическими веществами. Однако их ограниченный элементный состав (углерод, водород, а также кислород и, реже, азот и фосфор), отсутствие данных о структуре молекул, а также трудности в установлении количественного состава органических соединений не позволяли использовать для конструирования их названий систематические подходы, достаточно успешно применяемые в то время для неорганических веществ. Поэтому до середины XIX века для органических веществ использовались лишь тривиальные названия по источнику их происхождения (муравьиная, винная, лимонная кислоты), первооткрывателю (кетон Михлера, основание Трёгера), а также являющиеся сокращениями слов и других названий (альдегид — Alcohol dehydrohenatus или ацеталь — продукт реакции ацетона и спирта (alcohol)).
Систематическая номенклатура органических соединений в полной мере возникла после разработки научных основ органической химии, сформированной в 1861 году Бутлеровым в виде теории строения молекул органических веществ, согласно которой идентичность органических соединений определяется не только элементным составом молекул, но и порядком соединения в них атомов и их пространственным расположением.
Можно выделить четыре основных этапа развития систематической номенклатуры:
Совершенствование номенклатуры неорганических и координационных соединений
Современная химическая номенклатура ИЮПАК содержит сведения по трем основным направлениям:
Успешность создания химической номенклатуры, общепринятой в мировом масштабе, зачастую, определяется возможностью нахождения компромиссов в случае неоднозначных вопросов. В номенклатуре ИЮПАК яркими примерами таких компромиссных решений являются:
Тривиальные названия соединений
Тривиальные названия — названия, исторически закрепившиеся за какими-либо соединениями, и не соответствующие никакой номенклатуре.
Тривиальные названия неорганических веществ (тривиальная номенклатура) — это названия неорганических веществ, которые присвоили тем или иным веществам, и которые не относятся ни к какой системе названия веществ (систематической номенклатуре и др.).
Тривиальные названия органических веществ (тривиальная номенклатура)
Органическими называются соединения, в составе которых содержится углерод. Некоторые типы соединений, например карбонаты, простые оксиды углерода и цианиды, а также аллотропные формы углерода, считаются неорганическими. Существует около 10 миллионов различных органических соединений, и 10 тысяч новых находят или синтезируют каждый год. Но не волнуйтесь – называть их довольно несложно.
Номенклатура органических веществ – это система правил, которые позволяют дать уникальное название каждому химическому соединению.
Перед изучением номенклатуры органических веществ обязательно рекомендую познакомиться с темой Классификация органических соединений.
Систематическая номенклатура ИЮПАК
В настоящее время используется номенклатура ИЮПАК (IUPAC) — Международный союз теоретической и прикладной химии (International Union of Pure and Applied Chemistry).
Основа названия органических соединений в зависимости от числа атомов углерода:
Наличие двойных или тройных связей в молекулах органических соединений обозначают, добавляя в конце слова суффикс -ен или -ин:
Наличие функциональных групп в органической молекуле обозначают добавлением в название приставки или суффикса:
Для обозначения числа кратных связей и числа функциональных групп используют следующие числительные:
Название углеводородных радикалов:
Правила составления названий алканов
1. Выбирают главную углеродную цепь
Главная цепь — это самая длинная и самая разветвленная непрерывная последовательность углеродных атомов. При этом неважно, как нарисованы на схеме углеродные атомы (вверх, вниз, влево, вправо). При этом углеводородные радикалы, которые не входят в главную цепь, являются в ней заместителями. Главная цепь должна быть самой длинной.
Например, в молекуле на рисунке главной является цепь, отмеченная на рисунке а
2. Главная цепь должна быть самой разветвленной.
Например, в молекуле, изображенной на рисунках а и б, выделены цепи с одинаковым числом атомов углерода. Но главной будет цепь, изображенная на рисунке а, т.к. от нее отходит 2 заместителя, а от главной цепи на рисунке б – один:

3. Нумеруют атомы углерода в главной цепи.
Нумерацию следует начинать с более близкого к старшей группе конца цепи.
При наличии двух и более заместителей цепь стараются пронумеровать так, чтобы заместителям принадлежали минимальные номера.
Например, правильная нумерация в главной углеродной цепи
Тривиальная номенклатура сложилась исторически по мере зарождения и развития исторической химии, до появления единой системы наименования органических веществ.
Многие тривиальные названия используются и сейчас. В таблице ниже приведены тривиальные названия основных органических веществ, а также их названия по систематической номенклатуре.
В соответствии с номенклатурой ИЮПАК любое бинарное соединение, в котором присутствует кислород со степенью окисления -2, называют словом «оксид», затем указывают название элемента в родительном падеже. Если для элемента характерна постоянная валентность, то больше ничего указывать не нужно. Если для элемента характерна переменная валентность, то после названия необходимо указать в скобках его валентность в данном оксиде; валентность указывают римскими цифрами.
: WO3 — оксид вольфрама (VI); Li2O — оксид лития.
Если вы не знаете, что такое валентность, и как ее определять, то необходимо изучить соответствующую статью.
Номенклатура оснований и амфотерных гидроксидов
Названия оснований и амфотерных гидроксидов строятся аналогично, только вместо слова «оксид» используют слово «гидроксид«, затем указывают название металла в родительном падеже. Если для металла (или металлоподобного иона) характерна постоянная валентность, то больше ничего указывать не нужно. Если для металла характерна переменная валентность, то после названия необходимо указать в скобках его валентность в данном гидроксиде; валентность указывают римскими цифрами.
: KOH – гидроксид калия; Fe(OH)3 – гидроксид железа (III).
Номенклатура кислот и солей
Название кислот строятся так: к корню названия центрального элемента на русском языке добавляют постфиксы -ная, -нистая или -водородная, в зависимости от степени окисления центрального элемента.
Если вы не помните, что такое степень окисления, и как ее определять, то сначала необходимо изучить соответствующую статью.
Названия солей строятся так: к корню названия центрального элемента на латинском языке добавляют постфиксы -ат, -ит или -ид, в зависимости от степени окисления центрального элемента. Затем указывают название металла в родительном падеже. Если для металла (или металлоподобного иона) характерна постоянная валентность, то больше ничего указывать не нужно. Если для металла характерна переменная валентность, то после названия необходимо указать в скобках его валентность в данной соли; валентность указывают римскими цифрами.
Корни латинского названия у большинства элементов совпадают с корнями русского названия. Для некоторых элементов они отличаются. Их следует запомнить:
C – карб, S – сульф, N – нитр и др.

Рассмотрим основные случаи.
Если центральный элемент в кислоте имеет высшую степень окисления, т.е. в кислотном остатке этой кислоты содержится максимальное количество атомов кислорода, то к названию кислоты добавляют постфикс -ная или -вая.
: H2S+6O4 – серная кислота, H3P+5O4 – фосфорная кислота.
При этом в названии соли используют постфикс -ат.
Na2S+6O4 – сульфат натрия, K2C+4O3 – карбонат калия.
Если центральный элемент в кислоте имеет промежуточную степень окисления, т.е. в кислотном остатке этой кислоты содержится не максимальное количество атомов кислорода, то к названию кислоты добавляют постфикс -нистая.
: H2S+4O3 – сернистая кислота, H3P+3O3 – фосфористая кислота.
При этом в названии соли используют постфикс —ит.
, Na2S+4O3 – сульфит натрия, KN+3O2 – нитрит калия.
Если центральный элемент в кислоте имеет низшую степень окисления, т.е. в кислотном остатке этой кислоты не содержатся атомы кислорода, то к названию кислоты добавляют постфикс -водородная.
: H2S-2 – сероводородная кислота, HCl— – хлороводородная кислота.
При этом в названии соли используем постфикс -ид.
, Na2S-2 – сульфид натрия, KCl— – хлорид калия.

Номенклатура кислых солей.
Если в кислой соли на один кислотный остаток приходится один атом водорода, то к названию кислотного остатка добавляют префикс гидро-. Если на один кислотный остаток приходится два атома водорода, то добавляют префикс дигидро-.
, K2HPO4 – гидрофосфат калия, KH2PO4 – дигидрофосфат калия. Но: Ca(HCO3)2 – гидрокарбонат кальция.
Номенклатура основных солей.
Если в основной соли на один катион металла приходится одна гидроксо-группа, то к названию кислотного остатка добавляют префикс гидроксо-. Если на один катион металла приходится две гидроксо-группы, то добавляют префикс дигидроксо-.
, AlOHCl2 – гидроксохлорид алюминия, Al(OH)2Cl – дигидроксохлорид алюминия. Но: (CuOH)2CO3 – гидроксокарбонат меди (II).
В названии двойной соли катионы металлов перечисляют через дефис. В названии смешанных солей анионы кислотных остатков перечисляются через дефис.
, KAl(SO4)2 – сульфат алюминия-калия, CaClBr – бромид-хлорид кальция.

Также применяется тривиальная номенклатура. Тривиальные названия неорганических необходимо выучить наизусть.

Номенклатура комплексных солей*
Комплексное соединение может состоять из комплексного катиона, комплексного аниона или может быть нейтральным.
Комплексные соединения состоят из внутренней и внешней сферы. Центральная частица, вокруг которой расположены окружающие ее лиганды, называется комплексообразователем. Число лигандов комплексообразователя называется координационным числом. Как правило (но не обязательно!), число лигандов в 2 раза больше, чем степень окисления центральной частицы.
Соединения с комплексными катионами. Вначале называют анион внешней сферы, затем перечисляют лиганды, затем называют комплексообразователь в родительном падеже (ему дается русское название данного элемента). После названия комплексообразователя в скобках римской цифрой указывается его степень окисления.
К латинскому названию анионного лиганда добавляется окончание “о” (F— — фторо, Cl— -хлоро, ОН— — гидроксо, CN— — циано и т.д). Аммиак обозначают термином “аммин”, СО – карбонил, NO – нитрозил, H2O – аква.
Число одинаковых лигандов называют греческим числительным: 2 –ди, 3 – три, 4 – тетра, 5 – пента, 6 – гекса, 7 – гепта и т.д.
Вначале перечисляют лиганды анионные, затем нейтральные, затем катионные.
Если в комплексе имеются несколько лигандов одинакового знака заряда, то они называются в алфавитном порядке:
Соединения с комплексными анионами. Вначале называют комплексный анион в именительном падеже: перечисляют лиганды, затем комплексообразователь (ему дается латинское название и к названию добавляется окончание “ат”). После названия комплексообразователя указывается его степень окисления. Затем в родительном падеже называется внешнесферный катион.
Соединения без внешней сферы. Вначале называют лиганды, затем комплексообразователь в именительном падеже с указанием его степени окисления. Все название пишется слитно.
* материалы с портала onx.distant.ru
Умение давать названия основным химическим соединениям — необходимая составляющая успешного изучения химии. Следуйте данному руководству, чтобы узнать некоторые базовые правила присвоения названий химическим соединениям, а также научиться называть химические соединения, которые вы увидели впервые.
